Type II1 factors satisfying the spatial isomorphism conjecture

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type II1 factors satisfying the spatial isomorphism conjecture

conjecture Jan Cameron ∗, Erik Christensen †, Allan M. Sinclair ‡,Roger R. Smith §,Stuart White ¶,Alan D. Wiggins ‖ ∗Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, U.S.A.,†Institute for Mathematiske Fag, University of Copenhagen, Copenhagen, Denmark.,‡School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland.,§Departm...

متن کامل

Type II₁ factors satisfying the spatial isomorphism conjecture.

This paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38-54] that a von Neumann algebra M on a Hilbert space H should be unitarily equivalent to each sufficiently close von Neumann algebra N, and, moreover, the implementing unitary can be chosen to be close to the identity operator. This conjecture is known to be true for amenable von Ne...

متن کامل

Perturbations of Subalgebras of Type Ii1 Factors

In this paper we consider two von Neumann subalgebras B0 and B of a type II1 factor N . For a map φ on N , we define ‖φ‖∞,2 = sup{‖φ(x)‖2 : ‖x‖ ≤ 1}, and we measure the distance between B0 and B by the quantity ‖EB0 −EB‖∞,2. Under the hypothesis that the relative commutant in N of each algebra is equal to its center, we prove that close subalgebras have large compressions which are spatially is...

متن کامل

Type II1 Factors With A Single Generator

In the paper, we study the generator problem of type II1 factors. By defining a new concept closely related to the numbers of generators of a von Neumann algebra, we are able to show that a large class of type II1 factors are singly generated, i.e., generated by two self-adjoint elements. In particular, we show that most of type II1 factors, whose free entropy dimensions are known to be less th...

متن کامل

A Kurosh Type Theorem for Type Ii1 Factors

The classification of type II1 factors (of discrete groups) was initiated by Murray and von Neumann [MvN] who distinguished the hyperfinite type II1 factor R from the group factor LFr of the free group Fr on r ≥ 2 generators. Thirty years later, Connes [Co2] proved uniqueness of the injective type II1 factor. Thus, the group factor LΓ of an ICC amenable group Γ is isomorphic to the hyperfinite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2012

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.1217792109